首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11754篇
  免费   1606篇
  国内免费   2403篇
化学   13177篇
晶体学   115篇
力学   297篇
综合类   85篇
数学   56篇
物理学   2033篇
  2024年   24篇
  2023年   188篇
  2022年   364篇
  2021年   561篇
  2020年   850篇
  2019年   626篇
  2018年   445篇
  2017年   468篇
  2016年   548篇
  2015年   535篇
  2014年   603篇
  2013年   966篇
  2012年   789篇
  2011年   639篇
  2010年   496篇
  2009年   621篇
  2008年   684篇
  2007年   675篇
  2006年   682篇
  2005年   635篇
  2004年   618篇
  2003年   524篇
  2002年   427篇
  2001年   344篇
  2000年   317篇
  1999年   229篇
  1998年   211篇
  1997年   242篇
  1996年   211篇
  1995年   216篇
  1994年   186篇
  1993年   183篇
  1992年   162篇
  1991年   84篇
  1990年   70篇
  1989年   55篇
  1988年   50篇
  1987年   45篇
  1986年   23篇
  1985年   29篇
  1984年   25篇
  1983年   14篇
  1982年   18篇
  1981年   15篇
  1980年   18篇
  1979年   12篇
  1978年   8篇
  1977年   5篇
  1976年   9篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Remote functionalization reactions have the power to transform a C−H (or C−C) bond at a distant position from a functional group. This Review summarizes recent advances and key breakthroughs in remote fluorination, trifluoromethylation, difluoromethylation, trifluoromethylthiolation, and fluoroalkenylation reactions. Several powerful strategies have emerged to control the reactivity and distal selectivity such as the undirected radical approach, the 1,5-hydrogen atom transfer, the metal migration, the use of distant directing groups, and the ring-opening reactions. These unconventional and predictable C−H (and C−C) functionalization transformations should allow for the preparation of a wide range of otherwise-difficult-to-access alkyl, aromatic, heteroaromatic, and structurally complex fluorides.  相似文献   
62.
The recently delineated structure- and reactivity-based concept of antivitamins B12 has begun to bear fruit by the generation, and study, of a range of such B12-dummies, either vitamin B12-derived, or transition metal analogues that also represent potential antivitamins B12 or specific B12-antimetabolites. As reviewed here, this has opened up new research avenues in organometallic B12-chemistry and bioinorganic coordination chemistry. Exploratory studies with antivitamins B12 have, furthermore, revealed some of their potential, as pharmacologically interesting compounds, for inducing B12-deficiency in a range of organisms, from hospital resistant bacteria to laboratory mice. The derived capacity of antivitamins B12 to induce functional B12-deficiency in mammalian cells and organs also suggest their valuable potential as growth inhibitors of cancerous human and animal cells.  相似文献   
63.
A large-scale synthesis of known Ru olefin metathesis catalyst VII featuring an unsymmetrical N-heterocyclic carbene (NHC) ligand with one 2,5-diisopropylphenyl (DIPP) and one thiophenylmethylene N-substituent is reported. The optimised procedure does not require column chromatography in any step and allows for preparation of up to 0.5 kg batches of the catalyst from simple precursors. The application profile of the obtained catalyst was studied in environmentally friendly dimethyl carbonate (DMC). Although VII exhibited low efficiency in cross-metathesis (CM) with electron-deficient partners, good to excellent results were noted for substrates featuring easy to isomerise C−C double bonds. This includes polyfunctional substrates of medicinal chemistry interest, such as analogues of psychoactive 5F-PB-22 and NM-2201 and two PDE5 inhibitors—Sildenafil and Vardenafil. Finally, a larger scale ring-closing metathesis (RCM) of a Vardenafil derivative was conducted in DMC, allowing for straightforward isolation of the expected product (23 g) in high yield and with low Ru contamination level (7.7 ppm).  相似文献   
64.
《Mendeleev Communications》2020,30(2):168-170
  1. Download : Download high-res image (113KB)
  2. Download : Download full-size image
  相似文献   
65.
We investigated the adsorption of heavy metal ions on a nanostructured coating of zinc-aluminum layered double hydroxides (Zn-Al LDHs) grown on aluminum foam by one-step hydrothermal process. This approach aimed to increase the interactive surface and provide a more practical medium for removal of toxic heavy metals from aqueous media. The foam coated with LDH was characterized by using scanning electron microscopy and X-ray diffraction. After immersion in a copper-rich water solution, X-ray photoelectron spectroscopy demonstrated the occurrence of adsorbed copper on the LDH-coated foam with two oxidation states: particles of metallic copper Cu0 with oxidized surface Cu+1. X-ray diffraction showed the presence of Cu+2 in the LDH structure.  相似文献   
66.
New pyridinium-functionalized metalloporphyrins MEtPpBr4 (M = Zn2+, Co2+, Ni2+, Cu2+; EtPp = 5, 10, 15, 20-tetra(4-(3-(N-ethyl-4-pyridyl)pyrazolyl)phenyl)porphyrin) were synthesized as bifunctional catalysts for the cycloaddition reactions of epoxides and CO2. The effects of catalyst loading, CO2 pressure, reaction temperature and time on catalytic activity were investigated. ZnEtPpBr4 ( 1 ) and CoEtPpBr4 ( 2 ) exhibited efficient activities in the cycloaddition reactions of various epoxides with CO2 as at 120 °C under 2 MPa of CO2 pressure without solvent. Most of corresponding cyclic carbonates could be obtained in almost quantitative yields and > 99.9% selectivity with molar ratio of epoxide/catalyst 2222 after 8 hr of reaction.  相似文献   
67.
Alpha-phenylethanol (PE) is an essential chemical in the field of medicine and synthetic perfumery. Therefore, in this work, we used a supported Ni–B–P amorphous alloy catalyst (Ni–B–P/SiO2) in the hydrogenation of acetophenone (AP) to α-PE, which demonstrated excellent catalytic activity and selectivity, compared with Ni–B/SiO2 (KBH4 reduction of nickel salt). Ni–B–P/SiO2 exhibited a high AP hydrogenation conversion of approximately 99%, whereas the PE selectivity reached up to 94%, which is approximately 1.4-fold higher than that of Ni–B/SiO2 (about 69%), thereby directly proving the unique inhibition of AP hydrogenation over hydrogenation of P in the Ni–B catalytic system. The doped P in Ni–B–P/SiO2 enhances the oxidation resistance and maintains the valence stability of Ni and B. Furthermore, sufficient experimental data were collected to determine the kinetic parameters. Based on the Langmuir–Hinshelwood model, we assumed that (i) AP and H2 compete for adsorption on Ni–B–P/SiO2; (ii) AP has strong adsorptive capacity on Ni–B–P/SiO2; and (iii) PE coverage on the catalyst was negligible. Then, the dynamic equation was derived, which indicated that experimental data agree well with the dynamic model. Finally, the activation energy was confirmed to be 50.73 KJ/mol. This report will open up an avenue for the industrialization of amorphous alloy catalysts.  相似文献   
68.
A new series of transition-metal complexes of Schiff base ligand containing the amino mercapto triazole moiety ( HL ) was prepared. The Schiff base and its metal complexes were elucidated by different spectroscopic techniques (infrared [IR], 1H nuclear magnetic resonance, UV–Visible, mass, and electron spin resonance [ESR]), and magnetic moment and thermal studies. Quantum chemical calculations have been carried out to study the structure of the ligand and some of its complexes. The IR spectra showed that the ligand is chelated with the metal ion in a neutral, tridentate, and bidentate manner using NOS and NO donors in complexes 1 – 6 , 10–12 , and 7 and 8 , respectively, whereas it behaves in a monobasic tridentate fashion using NOS donor sites in copper(II) nitrate complex ( 9 ). The magnetic moment and electronic spectra data revealed octahedral and square pyramidal geometries for complexes 2 , 11 , 12 , and 5 – 8 and 10 , respectively. However, the other complexes were found to have tetrahedral ( 4 ), trigonal bipyramidal ( 1 and 3 ), and square planar ( 9 ) structures. Thermal studies revealed that the chelates with different crystallized solvents undergo different types of interactions and the decomposition pathway ended with the formation of metal oxygen (MO) and metal sulfur (MS) as final products. The ESR spectrum of copper(II) complex 10 is axial in nature with hyperfine splitting with 2B1g as a ground state. By contrast, complexes 7 and 8 undergo distortion around the Cu(II) center, affording rhombic ESR spectra. The HL ligand and some of its complexes were screened against two bacterial species. Data showed that complex 12 demonstrated a better antibacterial activity than HL ligand and other chelates.  相似文献   
69.
A series of new mono- and bis-terpyridine complexes [Mn(tpyOH)Cl2] ( 1 ), [Ni(tpyOH)2](PF6)2 ( 2 ) and [Zn(tpyO)(η1-OCOCH3)(H2O)]⋅3H2O ( 4 ) containing 4′-hydroxy-2,2′:6′,2″-terpyridine (tpyOH) were synthesized and structurally characterized using elemental analysis, infrared spectroscopy and single-crystal X-ray diffraction. The reaction of MnCl2 with tpyOH in a mixture of methanol and CH2Cl2 resulted in the formation of 1 . The X-ray crystal structure of 1 reveals that Mn(II) is penta-coordinated by three nitrogen atoms from tpyOH and two Cl in a slightly distorted trigonal bipyramidal geometry. Complex 2 was also prepared by the reaction of nickel(II) chloride with tpyOH in a methanolic medium in the presence of NH4PF6. Notably, the complex [Ni(tpyOH)(tpyO)]PF6 ( 3 ), obtained during the crystallization of 2 from dichloromethane, was characterized using X-ray crystallography which shows that six nitrogen atoms from terpyridine ligands occupy the coordination sites around the Ni(II) centre in a distorted octahedral geometry with four longer bonds and two shorter Ni N bonds. The reaction of zinc(II) acetate with tpyOH in a mixture of methanol and CH2Cl2 led to the formation of 4 . The crystal structure of 4 reveals the formation of penta-coordinated Zn(II) complex containing three nitrogen atoms from tpyO, a monodentate acetate ligand and one coordinated water molecule. Hirshfeld surface analyses and two-dimensional fingerprint plots show that the main interactions are O…H/H…O contacts in 1 , 3 and 4 . The thermal decomposition reactions of 1 , 2 and 4 were studied using thermogravimetric analysis in detail due to their different structures. The solution luminescence features of 1 , 2 and 4 include high-energy intense π → π* intraligand and low-energy metal-to-ligand charge transfer transitions at room temperature. The calcination of the coordination complexes led to the formation of corresponding nano metal oxides. The products were structurally characterized using infrared spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The average particle size using Scherrer's equation was calculated to be below 50 nm.  相似文献   
70.
This study reports the synthesis of sulfonamide-derived Schiff bases as ligands L 1 and L 2 as well as their transition metal complexes [VO(IV), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)]. The Schiff bases (4-{E-[(2-hydroxy-3-methoxyphenyl)methylidene]amino}benzene-1-sulfonamide ( L 1 ) and 4-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}-N-(5-methyl-1,2-oxazol-3-yl)benzene-1-sulfonamide ( L 2 ) were synthesized by the condensation reaction of 4-aminobenzene-1-sulfonamide and 4-amino-N-(3-methyl-2,3-dihydro-1,2-oxazol-5-yl)benzene-1-sulfonamide with 2-hydroxy-3-methoxybenzaldehyde in an equimolar ratio. Sulfonamide core ligands behaved as bidentate ligands and coordinated with transition metals via nitrogen of azomethine and the oxygen of the hydroxyl group. Ligand L 1 was recovered in its crystalline form and was analyzed by single-crystal X-ray diffraction technique which held monoclinic crystal system with space group (P21/c). The structures of the ligands L 1 and L 2 and their transition metal complexes were established by their physical (melting point, color, yields, solubility, magnetic susceptibility, and conductance measurements), spectral (UV–visible [UV–Vis], Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and mass analysis), and analytical (CHN analysis) techniques. Furthermore, computational analysis (vibrational bands, frontier molecular orbitals (FMOs), and natural bonding orbitals [NBOs]) were performed for ligands through density functional theory utilizing B3LYP/6-311+G(d,p) level and UV–Vis analysis was carried out by time-dependent density functional theory. Theoretical spectroscopic data were in line with the experimental spectroscopic data. NBO analysis confirmed the extraordinary stability of the ligands in their conjugative interactions. Global reactivity parameters computed from the FMO energies indicated the ligands were bioactive by nature. These procedures ensured the charge transfer phenomenon for the ligands and reasonable relevance was established with experimental results. The synthesized compounds were screened for antimicrobial activities against bacterial (Streptococcus aureus, Bacillus subtilis, Eshcheria coli, and Klebsiella pneomoniae) species and fungal (Aspergillus niger and Aspergillus flavous) strains. A further assay was designed for screening of their antioxidant activities (2,2-diphenyl-1-picrylhydrazine radical scavenging activity, total phenolic contents, and total iron reducing power) and enzyme inhibition properties (amylase, protease, acetylcholinesterase, and butyrylcholinesterase). The substantial results of these activities proved the ligands and their transition metal complexes to be bioactive in their nature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号